|
|||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||
Applications in Confocal MicroscopyFluorescence Resonance Energy Transfer (FRET) Literature SourcesUnderstanding the dynamic interactions between proteins within living cells is fundamental to a basic knowledge of the underlying concepts that guide molecular and cellular biology. Over the past few years, the rapid development of fluorescent proteins and their application as fusion products and biosensors has significantly expanded the molecular toolkit available for probing the mysteries of cellular physiology and pathology. In this regard, fluorescence (or Förster) resonance energy transfer (FRET) is emerging as a powerful optical microscopy technique for examining physiological processes with high temporal and spatial resolution. The references listed below highlight important literature sources for review articles and original research reports on the construction and applications of fluorescent proteins for resonance energy transfer experiments. Bacskai, B. J., Hochner, B., Mahaut-Smith, M., Adams, S. R., Kaang, B. K., Kandel, E. R., and Tsien, R. Y., Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons., Science 260: 222-226 (1993). | PubMed | Bastiaens, P. I. H. and Jovin, T. M., Fluorescence resonance energy transfer microscopy., in Cell Biology: A Laboratory Handbook, Volume 3, Celis, J. E. (ed.), Academic Press, New York, pages 136-146 (1998). Bastiaens, P. I. H., Majoul, I. V., Verveer, P. J., Soeling, H. D., and Jovin, T. M., Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin., The EMBO Journal 15: 4246-4253 (1996). | PubMed | Bastiaens, P. I. H. and Pepperkok, R., Observing proteins in their natural habitat: The living cell., Trends in Biochemical Sciences 25: 631-637 (2000). | PubMed | Berland, K. M., Quantifying molecular interactions with fluorescence correlation spectroscopy., in Molecular Imaging: FRET Microscopy and Spectroscopy, Periasamy, A. and Day, R. N. (eds.), Oxford University Press, New York, pages 272-283 (2005). Berney, C. and Danuser, G., FRET or No FRET: A quantitative comparison., Biophysical Journal 84: 3992-4010 (2003). | PubMed | Botts, J., Takashi, R., Torgerson, P., Hozumi, T., Muhlrad, A., Mornet, D., and Morales, M. F., On the mechanism of energy transduction in myosin subfragment 1., Proceedings of the National Academy of Sciences, USA 81: 2060-2064 (1984). | PubMed | Cardullo, R. A., Mungavon, R. M., and Wolf, D. E., Imaging membrane organization and dynamics., in Biophysical and Biochemical Aspects of Fluorescence Spectroscopy, Dewey, T. G. (ed.), Springer, New York, pages 231-260 (1991). | Amazon | Cardullo, R. A. and Parpura, V., Fluorescence resonance energy transfer microscopy: Theory and Instrumentation., Methods in Cell Biology 72: 415-430 (2003). | PubMed | Centonze, V. E., Sun, M., Masuda, A., Gerritsen, H., and Herman, B., Fluorescence resonance energy transfer imaging microscopy., Methods in Enzymology 360: 542-560 (2003). | Methods in Enzymology | Chan, F. K.-M., Siegel, R. M., Zacharias, D., Swofford, R., Holmes, K. L., Tsien, R. Y., and Lenardo, M. J., Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein., Cytometry 44: 361-368 (2001). | PubMed | Chen, Y., Elangovan, M., and Periasamy, A., FRET data analysis: The algorithm., in Molecular Imaging: FRET Microscopy and Spectroscopy, Periasamy, A. and Day, R. N. (eds.), Oxford University Press, New York, pages 126-145 (2005). | Molecular Imaging | Chen, Y., Mills, J. D., and Periasamy, A., Protein localization in living cells and tissues using FRET and FLIM., Differentiation 71: 528-541 (2003). | PubMed | Chen, Y. and Periasamy, A., Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization., Microscopy Research and Technique 63: 72-80 (2004). | PubMed | Chen, Y. and Periasamy, A., Time-correlated single-photon counting fluorescence lifetime imaging - FRET microscopy for protein localization., in Molecular Imaging: FRET Microscopy and Spectroscopy, Periasamy, A. and Day, R. N. (eds), Oxford University Press, New York, 239-259 (2005). | Molecular Imaging | Clegg, R. M., fluorescence resonance energy transfer., in Fluorescence Imaging Spectroscopy and Microscopy, Wang, X. F. and Herman, B. (eds.), John Wiley and Sons, Inc., New York, pages 179-252 (1996). | Amazon | Clegg, R. M., Fluorescence resonance energy transfer and nucleic acids., Methods in Enzymology 211: 353-388 (1992). | Methods in Enzymology | Day, R. N., Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy., Molecular Endocrinology 12: 1410-1419 (1998). | PubMed | Day, R. N., Nordeen, S. K., and Wan, Y., Visualizing protein-protein interactions in the nucleus of the living cell., Molecular Endocrinology 13: 517-526 (1999). | PubMed | Day, R. N., Periasamy, A., and Schaufele, F., Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus., Methods 25: 4-18 (2001). | PubMed | Day, R. N. and Piston, D. W., Spying on the hidden lives of proteins., Nature Biotechnology 17: 425-426 (1999). | PubMed | Derdowski, A., Ding, L., and Spearman, P., A novel fluorescent resonance energy transfer assay demonstrates that the Human Immunodeficiency Virus type 1 Pr55Gag I Domain mediates Gag-Gag interactions., Journal of Virology 78: 1230-1242 (2004). Domanov, Y. A. and Gorbenko, G. P., Analysis of resonance energy transfer in model membranes: Role of orientational effects., Biophysical Chemistry 99: 143-154 (2002). Dos Remedios, C. G. and Moens, P. D. J., Fluorescence resonance energy transfer spectroscopy is a reliable "ruler" for measuring structural changes in proteins., Journal of Structural Biology 115: 175-185 (1995). Elangovan, M., Day, R. N., and Periasamy, A., Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell., Journal of Microscopy 205: 3-14 (2002). | PubMed | Elangovan, M., Day, R. N., and Periasamy, A., Dynamic imaging using fluorescence resonance energy transfer., BioTechniques 32: 1260-1265 (2002). Elangovan, M., Wallrabe, H., Chen, Y., Day, R. N., Barroso, M., and Periasamy, A., Characterization of one- or two-photon excitation fluorescence resonance energy transfer microscopy., Methods 29: 58-73 (2003). | PubMed | Erickson, M. G., Moon, D. L., and Yue, D. T., DsRed as a potential FRET partner with CFP and GFP., Biophysical Journal 85: 599-611 (2003). | PubMed | Fehr, M., Okumoto, S., Deuschle, K., Lager, I., Looger, L. L., Persson, J., Kozhukh, L., Lalonde, S., and Frommer, W. B., Development and use of fluorescent nanosensors for metabolite imaging in living cells., Biochemical Society Transactions 33: 287-290 (2005). | PubMed | Forde, T. S. and Hanley, Q. S., Following FRET through five energy transfer steps: spectroscopic photobleaching, recovery of spectra, and a sequential mechanism of FRET., Photochemical and Photobiological Sciences 4: 609-616 (2005). | PubMed | Förster, T., Intermolecular energy migration and fluorescence., Annalen der Physik (Leipzig) 2: 55-75 (1948). | Ann Phys | Förster, T., Delocalized excitation and excitation transfer., in Modern Quantum Chemistry, Sinanoglu, O. (ed.), Academic Press, New York, pages 93-137 (1965). Gadella, T. W. J. and Jovin, T. M., Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation., The Journal of Cell Biology 129: 1543-1558 (1995). | PubMed | Galperin, E., Verkhusha, V. V., and Sorkin, A., Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells., Nature Methods 1: 209-217 (2004). Gautier, I., Tramier, M., Durieux, C., Coppey, J., Pansu, R. B., Nicolas, J. C., Kemnitz, K., and Coppey-Moisan, M., Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins., Biophysical Journal 80: 3000-3008 (2001). Gordon, G. W., Berry, G., Liang, X. H., Levine, B., and Herman, B., Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy., Biophysical Journal 74: 2702-2713 (1998). | PubMed | Gryczynski, Z., Gryczynski, I., and Lakowicz, J. R., Basics of Fluorescence and FRET., in Molecular Imaging: FRET Microscopy and Spectroscopy, Periasamy, A. and Day, R. N. (eds.), Oxford University Press, New York, pages 21-56 (2005). | Molecular Imaging | Harpur, A. G., Wouters, F. S., and Bastiaens, P. I. H., Imaging FRET between spectrally similar GFP molecules in single cells., Nature Biotechnology 19: 167-169 (2001). Haustein, E., Jahnz, M., and Schwille, P., Triple FRET: A tool for studying long-range molecular interactions., ChemPhysChem 4: 745-748 (2003). | PubMed | He, L., Gramer, A. C., Wu, X., and Lipsky, P. E., TRAF3 forms heterotrimers with TRAF2 and modulates its ability to mediate NF-kappa B activation., The Journal of Biological Chemistry 279: 55855-55865 (2004). | PubMed | Heim, R., Green fluorescent protein forms for energy transfer., Methods in Enzymology 302: 408-423 (1999). | PubMed | Herman, B., Resonance energy transfer microscopy., Methods in Cell Biology 30: 219-243 (1989). | PubMed | Hink, M. A., Visser, N. A., Borst, J. W., van Hoek, A., and Visser, A. J. W. G., Practical use of corrected fluorescence excitation and emission spectra of fluorescent proteins in Förster resonance energy transfer (FRET) studies., Journal of Fluorescence 13: 185-188 (2003). | J Fluorescence | Hohng, S. and Ha, T., Single-molecule FRET., in Molecular Imaging: FRET Microscopy and Spectroscopy, Periasamy, A. and Day, R. N. (eds.), Oxford University Press, New York, pages 165-179 (2005). | Molecular Imaging | Hoppe, A., Christensen, K., and Swanson, J. A., Fluorescence resonance energy transfer-based stoichiometry in living cells., Biophysical Journal 83: 3652-3664 (2002). Jares-Erijman, E. A. and Jovin, T. M., FRET imaging., Nature Biotechnology 21: 1387-1395 (2003). | PubMed | Karasawa, A., Araki, T., Nagai, T., Mizuno, H., and Miyawaki, A., Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer., Biochemical Journal (Great Britain) 381: 307-312 (2004). Karpova, T. S., Baumann, C. T., He, L., Wu, X., Grammer, A., Lipsky, P., Hager, G. L., and McNally, J. G., Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser., Journal of Microscopy 209: 56-70 (2003). | PubMed | Keating, E., Brown, C. M., and Petersen, N. O., Mapping molecular interactions and transport in cell membranes by image correlation spectroscopy., in Molecular Imaging: FRET Microscopy and Spectroscopy, Periasamy, A. and Day, R. N. (eds.), Oxford University Press, New York, pages 284-301 (2005). | Molecular Imaging | Kenworthy, A. K., Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy., Methods 24: 289-296 (2001). | PubMed | Kenworthy, A. K., Photobleaching FRET Microscopy., in Molecular Imaging: FRET Microscopy and Spectroscopy, Periasamy, A. and Day, R. N. (eds.), Oxford University Press, New York, pages 146-164 (2005). | Molecular Imaging | Kenworthy, A. K., Petranova, N., and Edidin, M., High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes., Molecular Biology of the Cell 11: 1645-1655 (2000). | PubMed | Kikuchi, K., Small molecule-based FRET sensors which enable ratiometric imaging of living cells., Bioimages 12: 55-60 (2004). | Bioimages | Kretsinger, R. H., Proteins and the flow of information in cellular function., in Molecular Imaging: FRET Microscopy and Spectroscopy, Periasamy, A. and Day, R. N. (eds.), Oxford University Press, New York, pages 1-20 (2005). | Molecular Imaging | Laib, S. and Seeger, S., FRET studies of the interaction of dimeric cyanine dyes with DNA., Journal of Fluorescence 14: 187-191 (2004). | PubMed | Lidke, D. S., Nagy, P., Barisas, B. G., Heintzmann, R., Post, J. N., Lidke, K. A., Clayton, A. H. A., Arndt-Jovin, D. J., and Jovin, T. M., Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET)., Biochemical Society Transactions 31: 1020-1027 (2003). | PubMed | Mattheyses, A. L., Hoppe, A. D., and Axelrod, D., Polarized fluorescence resonance energy transfer microscopy., Biophysical Journal 87: 2787-2797 (2004). | PubMed | Majoul, I., Analyzing the action of bacterial toxins in living cells with fluorescence resonance energy transfer (FRET)., International Journal of Medical Microbiology 293: 495-503 (2004). | PubMed | Mills, J. D., Stone, J. R., Okonkwo, D. O., Periasamy, A., and Helm, G. A., Multiphoton FRET microscopy for protein localization in tissue., in Molecular Imaging: FRET Microscopy and Spectroscopy, Periasamy, A. and Day, R. N. (eds.), Oxford University Press, New York, pages 112-125 (2005). | Molecular Imaging | Mills, J. D., Stone, J. R., Rubin, D. G., Melon, D. E., Okonkwo, D. O., Periasamy, A., and Helm, G. A., Illuminating protein interactions in tissue using confocal and two-photon excitation fluorescent resonance energy transfer microscopy., Journal of Biomedical Optics 8: 347-356 (2003). | PubMed | Mitra, R. D., Silva, C. M., and Youvan, D. C., Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein., Gene 173: 13-17 (1996). | PubMed | Miyawaki, A., Visualization of the spatial and temporal dynamics of intracellular signaling., Developmental Cell 4: 295-305 (2003). | PubMed | Miyawaki, A., Sawano, A., and Kogure, T., Lighting up cells: labeling proteins with fluorophores., Imaging in Cell Biology 5: S1-S7 (2003). | PubMed | Miyawaki, A. and Tsien, R. Y., Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein., Methods in Enzymology 327: 472-500 (2000). | Methods in Enzymology | Mizuno, H., Sawano, A., Eli, P., Hama, H., and Miyawaki, A., Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer., Biochemistry 40: 2502-2510 (2001). | PubMed | Nashmi, R., Fraser, S. E., Lester, H. A., and Dickinson, M. E., FRET measurements using multispectral imaging., in Molecular Imaging: FRET Microscopy and Spectroscopy, Periasamy, A. and Day, R. N. (eds.), Oxford University Press, New York, pages 180-192 (2005). Ng, T., Squire, A., Hansra, G., Bornancin, F., Prevostel, C., Hanby, A., Harris, W., Barnes, D., Schmidt, S., Mellor, H., Bastiaens, P. I. H., and Parker, P. J., Imaging protein kinase C-alpha activation in cells., Science 283: 2085-2089 (1999). | PubMed | Nguyen, A. W. and Daugherty, P. S., Evolutionary optimization of fluorescent proteins for intracellular FRET., Nature Biotechnology 23: 355-360 (2005). | PubMed | Patel, R. C., Kumar, U., Lamb, D. C., Eld, J. S., Rocheville, M., Grant, M., Rani, A., Hazlett, T., Patel, S. C., Gratton, E., and Patel, Y. C., Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells., Proceedings of the National Academy of Sciences, USA 99: 3294-3299 (2002). | PubMed | Patterson, G. H., Piston, D. W., and Barisas, B. G., Förster distances between green fluorescent protein pairs., Analytical Biochemistry 284: 438-440 (2000). | PubMed | Periasamy, A., Fluorescence resonance energy transfer microscopy: A mini review., Journal of Biomedical Optics 6: 287-291 (2001). | PubMed | Periasamy, A. and Day, R. N., Visualizing protein interactions in living cells using digitalized GFP imaging and FRET microscopy., Methods in Cell Biology 58: 293-314 (1999). | PubMed | Periasamy, A. and Day, R. N., Molecular Imaging: FRET Microscopy and Spectroscopy., Oxford University Press, New York, 312 pages (2005). | Molecular Imaging | Peter, M., Ameer-Beg, S. M., Hughes, M. K. Y., Keppler, M. D., Prag, S., Marsh, M., Vojnovic, B., and Ng, T., Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions., Biophysical Journal 88: 1224-1237 (2005). | PubMed | Pollok, B. A. and Heim, R., Using GFP in FRET-based applications., Trends in Cell Biology 9: 57-60 (1999). | PubMed | Ramanujan, V. K., Zhang, J.-H., Centonze, V. E., and Herman, B., Streak fluorescence lifetime imaging microscopy: A novel technology for quantitative FRET imaging., in Molecular Imaging: FRET Microscopy and Spectroscopy, Periasamy, A. and Day, R. N. (eds.), Oxford University Press, New York, pages 227-238 (2005). | Molecular Imaging | Redford, G. and Clegg, R. M., Real-time fluorescence lifetime imaging and FRET using fast-gated image intensifiers., in Molecular Imaging: FRET Microscopy and Spectroscopy, Periasamy, A. and Day, R. N. (eds.), Oxford University Press, New York, pages 193-226 (2005). | Molecular Imaging | Rizzo, M. A., Magnuson, M. A., Drain, P. F., and Piston, D. W., A functional link between glucokinase binding to insulin granules and conformational alterations in response to glucose and insulin., Journal of Biological Chemistry 277: 34168-34175 (2002). Rizzo, M. A. and Piston, D. W., High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy., Biophysical Journal 88: L14-L16 (2005). Rizzuto, R., Brini, M., De Giorgi, F., Rossi, R., Heim, R., Tsien, R. Y., and Pozzan, T., Double labeling of subcellular structures with organelle-targeted GFP mutants in vivo., Current Biology 6: 183-188 (1996). | PubMed | Schaufele, F., Demarco, I., and Day, R. N., FRET imaging in the wide-field microscope., in Molecular Imaging: FRET Microscopy and Spectroscopy, Periasamy, A. and Day, R. N. (eds.), Oxford University Press, New York, pages 72-94 (2005). | Molecular Imaging | Schüttrigkeit, T. A., Zachariae, U., von Feilitzsch, T., Wiehler, J., von Hummel, J., Steipe, B., and Michel-Beyerle, Picosecond time-resolved FRET in the fluorescent protein from Discosoma Red (wt-DsRed)., ChemPhysChem 5: 325-328 (2001). Sekar, R. B. and Periasamy, A., Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations., Journal of Cell Biology 160: 629-633 (2003). | PubMed | Selvin, P. R., Fluorescence resonance energy transfer., Methods in Enzymology 246: 300-334 (1995). | Methods in Enzymology | Selvin, P. R., The renaissance of fluorescence resonance energy transfer., Nature Structural Biology 7: 730-734 (2000). | PubMed | Siegel, R. M., Chan, F. K.-M., Zacharias, D. A., Swofford, R., Holmes, K. L., Tsien, R. Y., and Lenardo, M. J., Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein., Science's STKE 38: PL1 (2000). | PubMed | Soutto, M., Xu, Y., and Johnson, C. H., Bioluminescence resonance energy transfer: Techniques and potential., in Molecular Imaging: FRET Microscopy and Spectroscopy, Periasamy, A. and Day, R. N. (eds.), Oxford University Press, New York, pages 260-271 (2005). Squire, A., Verveer, P. J., Rocks, O., and Bastiaens, P. I. H., Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells., Journal of Structural Biology 147: 62-69 (2004). | PubMed | Stanley, C. M., An Introduction to FRET, with an Emphasis on the Optics Involved., Chroma Technology Corp., Rockingham, Vermont, Chroma Application Notes 6: 1-14 (2003). | Chroma Technology | Stanley, C. M., An Introduction to filters and mirrors for FRET., in Molecular Imaging: FRET Microscopy and Spectroscopy, Periasamy, A. and Day, R. N. (eds.), Oxford University Press, New York, pages 57-71 (2005). | Molecular Imaging | Stryer, L., Fluorescence energy transfer as a spectroscopic ruler., Annual Review of Biochemistry 47: 819-846 (1978). | PubMed | Thaler, C., Koushik, S. V., Blank, P. S., and Vogel, S. S., Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer., Biophysical Journal 89: 2736-2749 (2005). | PubMed | Ting, A. Y., Kain, K. H., Klemke, R. L., and Tsien, R. Y., Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells., Proceedings of the National Academy of Sciences (USA) 98: 15003-15008 (2001). | PubMed | Tramier, M., Gautier, I., Piolot, T., Ravalet, S., Kemnitz, K., Coppey, J., Durieux, C., Mignotte, V., Coppey-Moisan, M., Picosecond-hetero-FRET microscopy to probe protein-protein interactions in live cells., Biophysical Journal 83: 3570-3577 (2002). | PubMed | Tron, L., Szollosi, J., Damjanovich, S., Helliwell, S. H., Arndt-Jovin, D. J., Jovin, T. M., Flow cytometric measurement of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell-by-cell basis., Biophysical Journal 45: 939-946 (1984). | PubMed | Truong, K., Sawano, A., Mizuno, H., Hama, H., Tong, K. I., Mal, T. K., Miyawaki, A., and Ikura, M., FRET-based in vivo calcium imaging by a new calmodulin-GFP fusion molecule., Nature Structural Biology 8: 1069-1073 (2001). | PubMed | Tsien, R. Y., Bacskai, B. J., and Adams, S. R., FRET for studying intracellular signaling., Trends in Cell Biology 3: 242-245 (1993). | PubMed | Uster, P. S. and Pagano, R. E., Resonance energy transfer microscopy: Observations of membrane-bound fluorescent probes in model membranes and living cells., The Journal of Cell Biology 103: 1221-1234 (1986). | PubMed | Valentin, G., Verheggen, C., Piolot, T., Neel, H., Coppey-Moisan, M., and Bertrand, E., Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments., Nature Methods 2: 801 (2005). | PubMed | van Munster, E. B., Kremers, G. J., Adjobo-Hermans, M. J. W., and Gadella, T. W. J., Jr., Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching., Journal of Microscopy 218: 253-262 (2005). | PubMed | van Rheenen, J., Langeslag, M., and Jalink, K., Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission., Biophysical Journal 86: 2517-2529 (2004). | PubMed | van Roessel, P. and Brand, A. H., Imaging into the future: Visualizing gene expression and protein interactions with fluorescent proteins., Nature Cell Biology 4: E15-E20 (2002). | PubMed | van Thor, J. J. and Hellingwerf, K. J., Fluorescence resonance energy transfer (FRET) applications using green fluorescent protein., in Green Fluorescent Protein: Applications and Protocols (Methods in Molecular Biology, Volume 183), Hicks, B. W. (ed.), Humana Press, Totowa, New Jersey, pages 101-119 (2002). | Amazon | Vanderklish, P. W., Krushel, L. A., Holst, B. H., Gally, J. A., Crossin, K. L., and Edelman, G. M., Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer., Proceedings of the National Academy of Sciences (USA) 97: 2253-2258 (2000). | PubMed | Wallrabe, H. and Barroso, M., Confocal FRET microscopy: Study of clustered distribution of receptor-ligand complexes in endocytic membranes., in Molecular Imaging: FRET Microscopy and Spectroscopy, Periasamy, A. and Day, R. N. (eds.), Oxford University Press, New York, pages 95-111 (2005). | Molecular Imaging | Wallrabe, H., Elangovan, M., Burchard, A., Periasamy, A., and Barroso, M., Confocal FRET microscopy to measure clustering of ligand-receptor complexes in endocytic membranes., Biophysical Journal 85: 559-571 (2003). | PubMed | Wallrabe, H. and Periasamy, A., Imaging protein molecules using FRET and FLIM microscopy., Current Opinion in Biotechnology 16: 19-27 (2005). | PubMed | Wallrabe, H., Stanley, M., Periasmy, A., and Barroso, M., One- and two-photon fluorescence resonance energy transfer microscopy to establish a clustered distribution of receptor-ligand complexes in endocytic membranes., Journal of Biomedical Optics 8: 339-346 (2003). | PubMed | Watrob, H. M., Pan, C.-P., and Barkley, M. D., Two-step FRET as a structural tool., Journal of the American Chemical Society 125: 7336-7343 (2003). | PubMed | Weiss, S., Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy., Nature Structural Biology 7: 724-729 (2000). | PubMed | Wu, P. and Brand, L., Resonance energy transfer: Methods and Applications., Analytical Biochemistry 218: 1-13 (1994). | Analytical Biochemistry | Xia, Z. and Liu, Y., Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes., Biophysical Journal 81: 2395-2402 (2001). Yang, X., Xu, P., and Xu, T., A new pair for inter- and intra-molecular FRET measurement., Biochemical and Biophysical Research Communications 330: 914-920 (2005). | PubMed | Zaccolo, M., Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses., Circulation Research 94: 866-873 (2004). Zal, T. and Gascoigne, N. R. J., Photobleaching-corrected FRET efficiency imaging of live cells., Biophysical Journal 86: 3923-3939 (2004). | PubMed | Zhang, J., Ma, Y., Taylor, S. S., and Tsien, R. Y., Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering., Proceedings of the National Academy of Sciences 98: 14997-15002 (2001). | PubMed | Zimmerman, T., Rietdorf, J., Girod, A., Georget, V., and Pepperkok, R., Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair., FEBS Letters 531: 245-249 (2002). | PubMed | |
|||||||||||||||||||||||||||||||||||